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INTERACTION OF STRESS WAVES WITH CURVILINEAR TUNNEL CRACKS 
OF LONGITUDINAL SHEAR IN A HALF-SPACE* 

L.A. FIL'SHTINSKII 

A steady wave process is consideredinthe half-space with tunnel-like curvilinear 

cracks under conditions of antiplane deformation. Theensuingboundaryvalueproblems 
are reduced to singular integro-differential equations which are realized numerical- 

ly. If the crack tip reaches the half-space boundary, the kernel of the integro- 

differential equation contains, besides a moving singularity of the Cauchy type, a 
fixed singularity, and this singificantly affects the pattern of longitudinal shear 

stress wave fields. This case is the subject of detailed investigationbelow.Cert- 

ain singularities of such wave processes are pointed out, and the results of calcul- 

ations of the dynamic stress intensity coefficient are presented. 

Stresses in bodies subjected to pulsed loading were considered in /l/. Various dynamic 
problems of the theory of elasticity in the case of media with a rectilinear slit appeared in 

/2,3/f and methods of calculating electromagnetic wave diffraction and scatter are presented 

in /4/. 

1. Statement of the problem. Consider the half-space .rz>() containing K curvilin- 

ear tunnel-like cracks Lj parallel to the zR axis (Fig.1 a). Letthehalf-space boundary ,1':! : 0 
be either free of forces (stress rz3 = 0 at 22 r 0) or constrained (displacement U' 0 at 

z:z y O), a load harmonic in time Zn* =- Re(e-ia* z*) be specified at the edges of Lj,and let 

a monochromatic wave of longitudinal shear 

U'O Iie (e-io* W,), ys -: w/c,, c? :: 1/ y/p (1.1) 
W, ~~ T esp [--iy, (x1 cos p* ~- x2 sin p*)l, T : cotlst 

where o is the angular frequency, c2 is the propagation velocity of the shear wave, p and (1 

are the shear modulus and density of the medium material u',, is the elastic displacement along 

the z3 axis, and p,+ 0 is the angle between the normal to the wave front and the r, axis, 

emanate from infinity. 
We assume that the load (variation) amplitude %+ :: -%- % satisfies on L = j_l /,j the 

Htjlder condition, and that Lj are simple nonintersecting smooth Liapunov arcs with Htilder con- 

tinuous curvature /5/. 
The singular field of longitudinal shear stress generated by external forces is expressed 

in terms of displacements by formulas /6/ 

aw 
713'PF, 723 = p g 2 ’ 

w = Re (e-iot (5%’ mk W’,)] 

c211 + y?*w = 0 

The quantity M', is defined in (1.1) , and W' defines the perturbed 

isfies one of the indicated above boundary conditions at the half-space 

on L a boundary condition of the form 

(1.2) 

wave field which sat- 

boundary and, also, 

(1.3) 

where the upper sign relates to the left-hand crack edge (when moving from its tip aj to tip 

bj), and II, is the angle between the positive normal to the left-hand edge at point 5 andthe 

x1 axis. 
Generalizing /7/, we represent the unknown function Win the form 

W (G, a) = + 5 p (5) [-$ H? (w) - A-&H!? (w-d] 4 - (1.4) 
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W1=~exp[-_iyz(~1cos8,-1F2sinB,)1, r=/z-St, r~=lz-li 
a 
x=T *(.&i~), &=+(++i&), C=Lt-f& 

where p (5) = {pi(c), CE Lj) are the unknown functions, H,,(l)(x) is a Hankel function of order 
v.A = 1 in the case of constrained half-space and A = -% for a half-space with boundary 
z2 =O free of forces, and 1 is a quantity complex conjugate of 5. Usingthereadilyderived 

formulas 
-$ #,')(yr)= (- -$-j"e-lna HE’(y), r= jz - toj (1.5) 

L$ Ht'(Vr)= (.- -$-)tle'naH$'(yr), a=arg(z -2,) 

Fig.1 

2. Integral equations of the boundary value problem (1.3) in the case when 
cracks do not reach the half-space boundary. Differentiating function wof (1.4) us- 
ing formulas (1.5), we obtain 

(2. 1) 

K, (5, Z) = $$ ei* [AHff’ (yzrl) + H2 (yzr) e-2’“] - 

$$ emiW[Ht’ (vZr) -f. AH:’ (y?r,) emaial] 

KS (c, 2) = T es* [N(i) (yg) + AHf’ (yrrl) eziE’] - 

y e-‘*[Hz (yg) e*‘= + AHF’(ygl)] 

H,(w) = $p + Hk’ (w?, a=arg(z-L), at=arg(z-_) 

where ds is an element of arc of contour of L, 
Integration by parts was used in the derivation of formulas (2.1), which in this case is 

justified. 
Indeed the displacement jump on Lis 

AK' = W+ - W- = 2pj(5), CE Lj (j = 1, . . ., k) (2.2) 

from which under the condition that cracks do nut reach the half-space boundary we have 

pj(Uj) = pj(bj) = 0 (j E I, . . -* k) (2.3) 

where aj is the beginning and bj the end of a crack L,. 
Passing in formulas (2.1.) to limit values as z-+ <a= L and substituting them in boundary 

conditions (1.3), after some transformations we obtain 

where 
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g (5, 50) = Im & (2.5) 

and in the case of a half-space constrained along its boundary -c2 -= 0 and ofafree half-space 

we, respectively, have 

In (2.4) 

of a singular 

ularity /7/. 

A = 1, N(&I)= n [+ + 7y2 exp(- iyzslo cos &)(ei+~ sin H+ + e-'**sin II-)] (2.6) 

A = - 1, N (co) = TI [ + + ~iy”. exp (- iyzxlo cos &) (2.7) 

(f+ cos B+ + +lo cos B-)1, B* = yzzzO sin & + fi* 

the kernel G(j, &,) has a logarithmic singularity, and kernel g(L, 5,) consists 

term (the Cauchy kernel) and of a term which cannot have more than a weak sing- 

Consequently, (2.4) represents a singular integro-differential equation with 

respect to function p'(c). It must be supplemented by conditions of the form 

5 p’ (5) as = 0 (j= 1 I.. ., k) (2.8) 

Lj 
The system of Eqs.(2.4) and (2.8) enables us to fully determine the solution of the 

stated boundary value problem. 

3. The half-plane with a crack reaching the boundary x2-O. Let the begin- 

ning of the crack (point a) lie on the boundary of the half-space (Fig-l, b). In that case 

formula (1.4) remains valid. When passing to limit in formulas (2.1) a nonintegrable singu- 

larity appears at point z == 5 -= a. Hence we represent them 

(3.1) 

Kernels K, (5, z) and K, (5, z) are obtained from K,(c,z) and Kz (5, z), respectively, by sub- 

stituting in the two last function H~.(ysr,) for H2(l)(ygl). 
Substituting limit values of derivatives in (3.1) as z--f c,,E L into the boundary condi- 

tion (1.3) we obtain, after transformations the singular integro-differential equation in p(c) 

of the type (2.41, where 

(3.2) 

where Hz(yzrlo) appears instead of HZ(') WIO) - 
For the constrained and free half-spaces we have, as previously, formulas (2.6) and (2.7), 

respectively. It was taken into account in the derivation of this equation that in the case 

of constrained half-space p(a) = 0. 
Formula (3.2) shows that the first term in kernel g(<, 5,) has a moving singularity of 

the Cauchy type, while the second term has a fixed singularity at point c= CO = a. The 

kernel G(c,&) has a logarithmic singularity. 
To find the order of the density singularity p'(c) at the crack tip n, we set 

p’(5)=$= *, Ima=O, O<U<l (3.3) 

where function cp(c)~ H on arc [a,b). 
Using the well-known formulas for asymptotic values of integrals of the Cauchy type on 

the integration line /5/, we obtain 

(3.4) 

where +(a) is the value of I#(<) at point j = a, and functions <pi(L) can have at point 5 :: a 

a singularity that is weaker than (i- a)-". Substituting Eq.(3.4) into Eqs.(2.4) and (3.21, 
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multiplying the left- and right-hand sides of the obtained equality by (co -a)", and passing 
then to limit as &,+a, we obtain the equation 

A cos 12 (a - 1) $ (a)] - cos nc = O (3.5) 

The analysisof solution of this equation in the case of A = 1 yields 

(J = up (a) I* (a) + JC/~I-~, 0 <J, (4 < n/.2, (J = $ (a) [$ (a) - n/2]-', -n/2 < Ip (a) < O (3.6) 
There are no solutions of Eq.(3.5) in thecaseof A = -1 whichsatisfy the condition 

o<u<1. 
Thus,ifthe half-spaceis constrainedalongtheboundary ~2 = 0 and thecracktip a reaches 

theboundary, thedensity p’(c) has atpoint a a powersingularityoforder o,whichisdetermined 
by formulas (3.3) and (3.6). Obviously 0 < a<'lZ. If,however, the half-planeboundaryis free 

of forces, function p’(G) is bounded at the tip a. 

4. Asymptotic values of stresses at the crack tip. Ifthecrackdoesnot reach 
theboundary x2 = 0, thedensity P’(c) h as atthetip a singularityofthesquare root type /8/. 
Let us set 

5 = 5 (B), 50 = 5 (MY --1 < BY PO Q 1, s’ (B) = + > 0, Qo @) E H I- 1, 11 (4.1) 

0 -2 
f 

Fig. 2 
2 

Fig.3 Fig.4 

Taking advantage of the behavior of the Cauchy type integrals, appearing in (2.1) in 
neighborhood of the ends of the integration line L /5/ and using formulas (4.1) and (1.2) 
obtain the following asymptotic values of stresses in the crack tip neighborhood: 

‘cl3 - h8 = T vzr8y(k 1) _exp f&c-21P(+l)-20)] x 

Re]e-W&(+1)], ~'(i.l)=+I~=*~ 

r= ]z-c],0=arg(z-cc) 

where the upper sign relates to the crack tip c = b and the lower to the tip c = a. 
Along the continuation beyond the crack tip we have 

Cle-4w 
%8 - h8 = v/2rs, (* 1) Re[e-W&(& I)] 

the 

, we 

(4.2) 

(4.3) 

Re[e-iW&l)] 

Thus the highest shear stress occurs on the small area of crack extension beyond its tip. 
The dynamic stress intensity coefficient is determined by the formula /3/ 

Let us now consider the case when the crack tip a reaches the half-space x2 =.O. If the 
boundary is constrained, then, according to the method of singular solutions /3/ in the sector 
of acute angle, stresses T187 %1 are finite, while in the complementary sector they have a 
power singularity whose order (T is defined in (3.6). When the crack reaches the constrained 
boundary at a straight angle, or the boundary is free of forces, stresses at point a are fin- 
ite. 

5. Results of calculations. We considered a parabolic crack whose parametric equa- 
tions are 

t = P,B, En= Pa-If PBP* --i <B =G 1 (5.1) 
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The integral equation (2.4) was reduced, with (4.1) and (5.1) taken into account, to a 
system of linear algebraic equations in terms of function Q,(b) at the interpolation nodes in 
conformity with the procedures in /9/. Results of calculations are shown in Figs.2-4. 

The dependence of a+= ~1 PO (1) li(Zl/Zs’ (1)) (Fig.2)and of 6+ argQ,(l) (Fig.3) on the variable 
y= ~~~1~14 (1 is the crack half-length) for the case T=~ 0, Z#O, p,= I. Curve 1 corresponds to 

pz = 1, A =~ -1, p = 0.05; curve 2 to p2- 1, .4 L- --1,~ =: 1; and curve 3 to p2 = i. A -m= I.,’ 1. 
Curve 4 relates to a "straight" crack in an unbounded medium (p=O.05, A : 0). For comparison 
data from /lo/ are shown there by small circles. 

When the quantities a+, IS+ are known it is possible to calculate the dynamic intensity 

coefficient k, using formula 
k, = zI/za+ cos(ot - 6+) 

The dependence of a,+= \Q,,(1)~1/1/(~1/s'(l)) (solid lines) and 6,+= arg B,, (I) (dash lines) on q 

are shown in Fig.4 forthe case of Z=0,7#0,p1==Ir , with pz = n/y,. p = to-*, A = 1 (curves 2): 

pz = Jc/(2y,), p = 10-2, A = -1 (curves 2), and pa = n/y,,p = 1, A = 1 (curves 3). The dynamic in- 
tensity coefficient is in this case calculated using formula 

k, = p’I/&c,+ cos (at - 6,+) 

The above data show the substanial effect of crack length on coefficient k,. 

The actuality of dynamic problems of the theory of elasticity of the half-spacewaspoint- 

ed out by A.A. Il'iushin at the All-Union Conference on the Theory of Elasticity (Erevan', 

1979) in connection with detection of defects. 
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